Почва, как среда обитания корней микробов и животных
Живая почва сада
Статья 6
Предыдущую статью я закончил фразой: Если спросить меня, назовите главный ресурс почвы, определяющий плодородие, я отвечу, что это не только содержание гумуса в почве и содержание доступных NPK в этом гумусе, главный ресурс моей почвы, определяющий урожай – это биоразнообразие живых существ населяющих почву.
Чем выше биоразнообразие почвенной биоты, тем лучше формируются микрогранулы почвы, строятся микро галереи, повышается её пористость, увеличивается в сотни раз площадь внутренней поверхности почвенных частиц и, естественно, площадь обитания микроорганизмов.
Всё это формирует разные экологические ниши для микробов. Как следствие контролирует болезни и вредителей.
Поговорим на эту тему подробней.
Почвы на наших грядках отличаются по составу (глина, песок), по размерам частиц, по степени выветривания, по слоям (профилю) – чем выше слой, тем больше органики и кислорода.
Это надо знать садоводу, чтобы понимать, как управлять процессами в почве.
Ведь структура почвы, размер частиц, степень разложения органики, определяет размер почвенных стабильных агрегатов, размер пор и как следствие площадь плёнок воды, где сосредоточена жизнь микробов и корней.
Надо помнить всегда и другое.
Чем больше корней культурных растение и дикоросов пронизывают почву, чем больше органики корневых выделение и отмерших корней поступает в почву, тем быстрей и в большем объёме нарастает почвенная биота.
Почва в процессе эксплуатации всегда меняется. Качество этих изменений зависит от садовода.
Остановимся чуть подробнее на этом.
Бактерии и грибы всегда прячутся от почвенных хищников в мелких порах и в глубине гранул. Как только мы лопатой нарушили их убежища, всё, что оказалось вне убежищ тут же съедается ползающими коллемболами, амёбами и др. хищниками.
Бактерии и грибы поэтому обычно живут осёдло, колониями. Прикрепляют себя к глинистым и перегнойным частицам жгутиками, полисахаридными смолами, грибницей.
Чем больше глинистых частиц, тем тоньше поры, куда нет хода хищникам. И наоборот, слишком плотная глина не проходима даже для мелких бактерий, поэтому органика в ней не разлагается годами и не доступна корням.
Но вот на грядки приходят черви, клещи, многоножки, нематоды, они прокладывают норки и норы, заглатывают органику вместе с глиной и песком, в их полостях работают более быстрые микроорганизмы, переваривая и разлагая с огромной скоростью почвенные частицы и попутно переваривая микроорганизмы, выделяя копролиты в почвенных ходах, куда устремляется воздух влага и корни.
Управлять этими процессами можно. Не надо переворачивать почву с ног на голову. А надо просто регулярно насыпать сверху органику с правильным соотношением азота к углероду и увлажнять почву.
Если садовод научен смотреть на органику как на питание (NPK) для корней, толку бывает мало.
Такой садовод свежий навоз закапывает в грядки, делает слой органики в «тёплых грядках» иногда метровой толщины, под растение насыпает толстый слой свежих сорняков, которые после дождя гниют.
Рано или поздно и эта органика принесёт пользу, но вначале она нарушит и структуру почвы и жизнь биоты, особенно быстро уничтожит почвенных хищников.
Поэтому важно знать, в какой органике, и в каких условиях быстрее всего заводятся почвенные мелкие животные, и вносить именно такую рыхлую органику, с соотношением азотистых и углеродистых отходов 1/30, с целью создания условий жизни мелким хищникам. А они обязательно и накормят и защитят ваши растения.
Крики соседей, что в рыхлой органике много всяких вредных жучков червячков и улиток, которые съедят корни и надо их всех убить и закопать – это вредный миф.
Главное – постоянство. Понемногу, в течение всего года, много лет подряд мульчируйте землю тем, что можно найти рядом или недорого привезти, при этом внимательно корригируя азот или углерод.
В любых постоянных условиях наладится свой биоценоз, лишь бы была энергия доступного углерода для бактерий и грибов.
Микробиота научится вырабатывать необходимые ферменты для разложения имеющихся энергетических продуктов, прежде всего целлюлозу, секретами привлечёт азотофиксаторов, которые добавят в пищевые цепочки почвы соли азота.
Чем лучше будет соотношение глины, песка и гумуса, чем меньше поры, тем больше почвенных бактерий спрячется от хищников, быстрей и лучше переработают вносимую органику, накормят растения.
Видео: почвенные организмы
А если вы мульчёй сохраните влагу и поры для воздуха – то и для корней и для биоты наступят райские условия жизни, сформируется особенная для ваших условий стабильная экосистема.
Попытаемся поразмышлять дальше, какие превращения происходят в почве, если сложилась стабильная почвенная экосистема.
Вспомним, что такое органическое вещество почвы.
Органическое вещество почвы состоит из углеродсодержащих соединений, образующихся в результате биологических процессов. Стоит помнить о двух главных процессах: разложение опада и разложение почвенных организмов, которые размножились на секретах корней и опаде корней.
Поэтому органика почвы - это всегда разная степень разложения клеточной структуры растений и животных. Медленней всего разлагается лигнин и хитин.
Но кроме мёртвой органики в почве всегда есть живые корни, живые микроорганизмы, и крупные почвенные животные. Чем их больше, тем почвы обычно плодородней и лучше противостоят стрессам.
Растения получают СО2, как принято говорить, углерод, только из атмосферы, эволюционно они не могут усваивать огромные запасы углерода в виде СО2 и глюкозы из почвы.
Спекуляции на этот счёт наукой не подтверждены. Опыты с СО2 и корнями в экспериментах, в реальной почве не играют никакой важной роли в жизни растений.
Есть много промышленных теплиц, где с поливной водой вносят в почву СО2 в огромной концентрации, корни его не всасывают, просто он медленно поднимается вверх и всасывается листьями через устьица, повышая фотосинтез и урожай. Урожай в теплицах при прочих равных условиях всегда зависит от содержания СО2 в воздухе, и не зависит от его содержания в почве.
В теплицах, где не вносят дополнительный СО2, в летний солнечный листья быстро его выедают, содержание падает ниже 0,01% и фотосинтез прекращается, а в почве днём концентрация СО2 очень высока из за разложения органики, но корни её почти не усваивают (не более 4%).
Видео: Потаённый мир почвы
В растения углерод поступает всегда из воздуха, в листьях (и в корнях) синтезируются более сложные органические соединения. Эти соединения поступают в почву и разлагаются гетеротрофными микроорганизмами.
Получается, сколько органики растение синтезирует и отдаёт почве, столько и поступает энергии для жизни биоты. Это в полях.
Но садовод может внести в почву дополнительную органику, чем резко ускорить процессы почвообразования, или неразумно внести минералку и пестициды, чем замедлить эти процессы.
Правильней, именно фотосинтез, точнее производство растением органических веществ, рассматривать как основной процесс, а далее смотреть, что улучшает этот процесс. Например, продолжительность и интенсивность света, содержание СО2 в воздухе, точнее поднос ветерком к листьям СО2, его содержание в микрозонах устьиц.
Наличие и доступность питательных веществ в почве, а так же влаги и тепла.
Наличие симбионтной биоты в почве со своими нужными растениям гормонами и витаминами.
Приведу примеры, чтобы оттенить важную мысль.
Внесите в виде мульчи на одну грядку траву люцерны или льна, на другую траву лебеды. Стебель люцерны очень прочный. Он состоит из сложных прочных молекул лигнина, при этом вместе с целлюлозой этот лигнин включён в прочнейшие стенки клеток растения. Разорвать эти связи способны ферменты редких грибов.
Поэтому гумус из этого лигнина сохраняется в почве сотни лет и определяет её пористость.
Лебеда состоит из простых белков, сахаров и немного целлюлозы. Разлагается очень быстро, почти не оставляя гумуса, сразу включаясь в пищевые цепочки микроорганизмов, поставляет растениям много азота.
Микроорганизмы так же быстро или умирают или поедаются хищниками и кормят азотом растения, а вот гумуса после себя почти не оставляют, потому что они не содержат структурно сложных молекул, таких как лигнин и целлюлоза.
На первой грядке растения вырастут слабее, а гумуса станет больше, на второй растения будут жировать, а содержание гумуса падать.
Лигнин появился в растениях в процессе эволюции не сразу, а только тогда, когда в них появились сосуды.
В отличие от целлюлозы, которая состоит из линейных цепочек сахаров, лигнин состоит из молекул с трёхмерной закольцованной структурой.
Грибы (бактерии) своими ферментами легко разрушает целлюлозу и черпают из неё энергию, для разрушения же лигнина ферментов и энергии надо затратить больше, а так как в лигнине практически нет азота и других дефицитных элементов, то ради одной энергии углерода биота с ним не связывается. Это и для растений балласт. Древние растения его просто выбрасывали (как какашки).
Сосудистые растения приспособились утилизировать лигнин, с помощью лигнина укреплять стенку проводящих сосудов. Как только в природе появился опад сосудистых растений, то есть появилось много лигнина, появились и грибы базидиомицеты, которые его переводят в гумус.
В почве гумус включился в дальнейшие цепочки почвообразования и сыграл ведущую роль для «строительства домов и городов» для почвенной биоты, определяя структуру почвы и её способность делать доступными для корней дефицитные минералы почвы.
Почитаем, что пишут учёные, как образовался гумус чернозёмных степей:
«&hellip- Максимальное накопление гумуса в мощных тучных черноземах связано с разложением большого количества корневых остатков в условиях весеннего максимума влаги при ограниченном сквозном промачивании гумусового горизонта.
Сухой летний период играет важную роль в образовании и накоплении гумуса черноземов по следующей причине: недостаток влаги в почве к концу лета подавляет жизнедеятельность микроорганизмов, разлагающих и минерализующих растительные остатки, но в это время продолжают интенсивно работать ферменты, играющие существенную роль в процессах собственно гумификации.
В течение вегетационного периода содержание гумуса в типичном чернозёме под целинной степью закономерно изменяется, уменьшаясь приблизительно к концу июня и снова повышаясь в сентябре. Гумус обильно снабжает элементами минерального питания интенсивно вегетирующую в это время растительность.
В конце же лета, она как бы «отдаёт» почве новое синтезированное органическое вещество взамен старого, израсходованного почвой на минерализацию в период бурного роста вегетативной массы.
В самом верхнем наиболее корнеобитаемом слое чернозема 0-5 см сезонные изменения содержания гумуса достигают, 2%: содержание гумуса сначала уменьшается с 10-11 до 8-9%, а к осени более или менее восстанавливается до первоначального уровня. Потеря 1-2% гумуса - это 25-30 т/га.
Невозможно предположить, что такое количество гумуса за 2-3 мес. может восстановить опад корней.
Самих корней в верхнем 20-сантиметровом слое чернозёма содержится 18 т/га.
Откуда же берётся органический материал – источник пополнения гумуса в чернозёме к концу вегетационного периода?
Этим источником являются не только опад корней и не только надземная масса степных трав после её отмирания, но и прижизненные корневые выделения, которые, тоже подчинены сезонной ритмике и достаточно обильны в целинно-степных чернозёмах &hellip-»
Я этими цитатами хочу показать, что даже в степях, в дикой природе гумус прирастает очень медленно, тысячи лет. А вот падает в периоде вегетации растений летом на 2%.
Видео: Среда обитания. Тот ещё фрукт!
Посадка сидератов не меняет скорости накопления гумуса.
Да, сидераты осенью дадут прибавку 1-2% гумуса, но ведь за лето они и съедят эти 1-2%. Без внесения щепы из сладких веточек или другой дополнительной органики нам не обойтись.
Теперь вам стала понятна роль гумуса в эволюции растений? Нет? Поговорим ещё.
Оксфордский словарь английского языка гласит, что гумус – «органический компонент почвы, формируется в результате разложения листьев и других растительных материалов» и что происходит от латинского, (лат. humus ) означает «почва».
Это простое определение, и оно не уточняет, что гуминовые вещества являются одними из самых сложных молекул и они чрезвычайно разнообразны.
«&hellip- В почвоведении, гумус относится к любому органическому веществу, которое достигло точки стабильности, когда оно не будет изменяться далее, и может, если условия не меняются, оставаться стабильным на протяжении веков, если не тысячелетий &hellip-». так написано в Википедии.
Гуминовые вещества образуются в результате распада органических веществ в почве, почти всегда перерабатываются ферментами живой биоты, поэтому они химически связаны с молекулами микробного и животного происхождения. Получить их в пробирке не удаётся. Только при разрушении энзимами грибов, и в дальнейшем в полости червей образуется гумус.
В конечном итоге любая органика, пройдя все пищевые цепочки почвенной биоты, оставляет в почве гумус. Гумус соединится с минералами почвы (как пример, в карбонатных почвах с кальцием, в глинистых – с солями алюминия и железа) и сформирует десяток видов и сотню подвидов почв, пригодных для жизни тех или иных растений.
Получается, что слово гумус учёными трактуется в узком и широком смысле.
Гумус – как точка стабильности разложения органики, когда не содержит азота и не будет изменяться далее.
И гумус как «чёрное вещество чернозёма», как humus «почва», 12% чернозёма, по сути, перегной, содержащий доступные NPK.
Простому садоводу надо знать главное, что чем больше гумуса в почве, тем лучше плодородие почвы и выше урожай. Неправильная агротехника приводит к тому, что на грядках садовода гумус быстро теряется. И наоборот. В силах опытного садовода повысить содержание гумуса почвы.
Поговорим об условиях разложения органики.
В свежем опаде находится много разных органических молекул, некоторые из них быстрее перерабатываются почвенными организмами, чем лигнин или целлюлоза.
Например, крахмал и аминокислоты – это простые органические молекулы, первыми вступают в процесс разложения. Очень много почвенных бактерий и грибов имеют ферменты, необходимые для этого процесса. Все видели, как быстро скисает мясной бульон или ягодный сок.
Разложение крахмала и аминокислот обеспечивает большую часть энергетических потребностей микроорганизмов почвы. Поэтому так эффективны подкормки растений настоями, например крапивы или окопника, где много сахаров и белка.
В противоположность этому, фенольные соединения, воски и лигнин состоят из более сложных органических молекул, в почве не деградирует в течение очень длительного периода времени.
Но бактерии, грибы, черви с клещами перерабатывают органику, если есть влага, воздух, нужное pH и температура. Об этом часто забывают начинающие.
Органика тонким слоем, положенная на песок – высохнет, закопанная глубоко – заплесневеет, сгниёт. Опилки без азота – закислят почву, пищевые отходы и зелёные листья из-за избытка азота загниют.
Процесс разложения органических веществ называется минерализацией. Во время минерализации, элементы, которые были частью структуры органических молекул, пройдя серию пищевых цепочек, постепенно окисляются до менее сложных форм, в конечном счёте, превращается в неорганические молекул, которые и усваиваются корнями.
Цель у микробов чисто утилитарная, забрать из органики энергию углерода, забрать из органики и из почвенного комплекса углерод, NPK и микроэлементы и построить свои тела, прежде всего нуклеиновые кислоты, белки и клеточные стенки.
Главный дефицит для них – это углерод с его энергией, второй лимитирующий фактор - это азот, хотя в почве богатой биотой при достатке энергии сахаров – дефицита азота нет, аммоний синтезируется из воздуха.
Таким образом, при разложении органики, в которой обычно много азота и фосфора, в богатой гумусом почве быстро создаётся избыток этих главных элементов, чем требуется для дальнейшего роста микроорганизма, этот избыток связывается минералами почвы или накапливаются в клетках микроорганизмов.
На почвах бедных глиной и биотой всё это уходит в реки.
Если в органике достаточно лигнина, то образующийся гумус иммобилизует избыточные азот и фосфор и почва быстро наращивает плодородие.
Целинные чернозёмы – бесценное богатство России
Моя Живая Земля, где содержание гумуса быстро прирастает – моё бесценное богатство.
Наряду с процессом минерализации идет и процесс иммобилизации, то есть происходит накопление питательных веществ в клетках организмов почвы, и эти вещества становятся временно недоступны для растений.
Таким образом, питательные вещества в начале разложения органики накапливаются в микробной биомассе грунта.
Иммобилизация азота почвенными организмами часто представляет значительную проблему для растений. Азот является важным элементом для всех организмов, за него всегда идёт борьба между биотой и растением.
Дикие растения имеют множество способов отнимать азот у микробов, привлекают хищных амёб, вступают в симбиоз с азотофиксаторами, секретируют много сахаров в почву.
Культурные растения не всегда сохранили эти приёмы. Поэтому садовод должен следить за процессами в этой конкурентной борьбе и подкармливать растения азотом, но помнить, лишний азот угнетает биоту, нарушает почвенные пищевые цепочки.
А перекормленные азотом растения привлекают вредителей.
Поэтому иногда подкормки компостными чаями с микроорганизмами работают намного мягче и эффективней, чем подкормки минеральными солями.
Поговорим о соотношении углерода к азоту (C/ N) в органическом веществе.
Разные растения имеют разные соотношения углерода к азоту в составе своих клеток. Например, бобовые имеют более высокую долю азота, чем злаковые травы.
Различия в C/N растительного опада влияет на круговорот азота (и других питательных веществ) в почве.
Органическое вещество с высоким C/N, не может удовлетворить потребности микроорганизмов в азоте для своего роста.
А опад из растений с низким C/N, таких, как бобовые, обеспечивает быстрый рост микроорганизмов.
Если почвы окультурены, гумуса много, доступного азота в почве достаточно для удовлетворения роста растений, то минерализация органического вещества даже бедного азотом не повлияет на рост растений в краткосрочной перспективе.
Наоборот, на бедных почвах, внесение соломы и опилок вызывает острую нехватку азота у растений. Такие почвы надо мульчировать вначале готовым компостом и постепенно добавлять грубую углеродистую мульчу, сочетая её богатыми азотом зелёными травами.
Понимание этих процессов приходит к садоводу не сразу. Умение вносить органику с нужным соотношением С/N, это сродни умению ездить на велосипеде. Набьёте шишек – научитесь.
Учёные доказали, что регулярное внесение органики с высоким содержанием азота часто не меняет общее содержание углерода в почве, гумус не накапливается, а плодородие растёт. Почему?
Оказывается весь вносимый углерод входит в состав живых почвенных микроорганизмов, гумуса при избытке азота становится меньше, а биомасса микробов нарастает.
Наоборот. При регулярном мульчировании почвы щепой лиственных веточек, в которых много лигнина и сахаров, содержание стабильного гумуса нарастает. При этом и биомасса микроорганизмов тоже может возрастать. Это сохраняет плодородие почвы в долгосрочной перспективе.
В природе подобные процессы происходят на Сахалине. Горные ручьи выносят в долины глинистые частицы, песок и ил, на них вырастают гигантские широколиственные травы. Появление таких трав – это маркер хорошего соотношения ила песка и глины в наносных почвах.
Опад зарослей гигантских горцев и борщевика содержит много лигнина, много сахаров и достаточно белка. В почвах быстро накапливается одновременно и гумус и почвенная биота.
Формируется особое очень активное почвенное сообщество с очень сложными и стабильными трофическими цепями.
Разнообразие микроорганизмов и почвенных животных в этой системе очень высокое. В таких почвах обнаружены «высокоскоростные» марганцевые бактерии, которые перерабатывают органику с высокой скоростью.
Перенос такой почвы на грядки и в сад приводит к гигантизму культурных растений в течении 2-3 лет. А если продолжать мульчировать эти грядки опадом горцев и не убивать биоту «химией» и лопатой, то стабильные урожаи без болезней можно получать очень долго.
Компостирование
Есть ли принципиальные различия в разложении органических веществ в тонком слое мульчи на грядке и в большой компостной куче?
Общее в том, что там и там органическое вещество разлагается почвенными организмами.
Разница в том, что процесс компостирования в куче происходит, во-первых, при более высоком проценте азотистых веществ (правильно, на 30 частей углерода 1 часть азота), при большем содержании доступных для быстрого разложения сахаров и белков, при достатке фосфора и извести, при частом рыхлении, позволяющем насытить компост кислородам, при более толстом слое компоста, когда происходит его самосогревание.
Это приводит к гибели нестойких к высоким температурам бактерий и грибов, гибели патогенов и семян сорняков, селекции термофильных микроорганизмов которые становятся доминирующими. Но при этом теряется энергия сахаров и азот аминокислот.
Все эти искусственные условия обычно создаёт опытный садовод, чтобы получить так называемый качественный перегной или компост. Без сорняков и патогенов. С высоким содержанием NPK, доступными для растений. Однако без сложившейся экосистемы, как в мусорной куче.
Почему садоводы любят компостировать органику? Так их учат учебники. Так удобней вносить небольшие количества перегноя на грядки под зеленные культуры. Так безопасней в плане патогенов и сорняков.
И вроде это не минералка, а органика.
Для почвы это конечно органика. Почвенную биоту компост не угнетает, а вот для растений внесение компоста похоже на внесение слабых растворов минеральных удобрений, так как содержание азота в компосте из «горячих куч» очень высоко и приводит к азотистому перекорму.
Почему среди любителей органического земледелия распространяется мнение, что органику надо вносить сразу на грядки?
Да потому что такая органика сразу включается в пищевые цепочки, и нет потерь сахаров и азота аминокислот. И в этом они правы.
Даже на тучных чернозёмах корни за лето выедают 2% гумуса, а тут мы сразу даём энергию в виде доступных сахаров и аминокислот.
Беда в том, что не всякую органику можно внести на грядки и не под всякую культуру.
Что делать с выгребными туалетами? В компосты они пойдут. На грядки – нет.
Что делать с опилками и стружкой? На дорожки и в компост пойдут, на грядках – заберут азот.
А свежие сорняки? Проще в компост, на грядках избыток зелёных сорняков в случае дождя вызовет гниение стволиков растений.
«Вонючки из сорняков» так же опасны на нежных культурах, часто при попадании на листья они провоцируют развитие грибковых заболеваний. В вонючках анаэробы, а их действие непредсказуемо.
У меня нет проблем, как использовать органику. Всё идёт в подстилку животным. Затем подстилка с навозом лежит в мешках. Перепревает лишь частично, лигнин и целлюлоза сохраняются, потерь азота при низких температурах нет, сорняки прорастают, черви и прочие животные заводятся.
Таким полукомпостом я и мульчирую свой сад и огород. Возить такие подсохшие мешки удобно, вносить на грядки рыхлый соломистый полуперепревший навоз с запахом грибов тоже не тяжело.
Часть такого подстилочного навоза я складываю на год лежать нетолстым слоем в зарослях окопника. Получается «компост из мусорной кучи». Он идёт для производства АКЧ и для внесения на грядки с нежной салатной зеленью.
Эту статью будут критиковать с двух сторон.
Фанаты минеральных удобрений скажут, что биота это сложно и непрактично. Весь мир кормит растения качественной минералкой и обгоняет по урожайности и дешевизне любого природника.
Фанатичный природник скажет, что все эти идеи взяты из «западной литературы», что я покушаюсь на основные постулаты российского природничества.
Сейчас наступает время готовить почвогрунт для рассады.
У меня приготовлен хороший голландский торфяной субстрат, керамзит, цеолит (глина для кошачьего туалета), сухой сапропель, и набор кристалонов с разными составами для разных растений.
Я растворю глину (2%) в горячей воде, замочу в ней керамзит (10%), добавлю сапропель (2%) и остальное – это торфяной субстрат.
Посажу в него семена огурцов и томатов и буду регулярно поливать нужными кристалонами.
Я не хочу рисковать рассадой, используя покупные грунты якобы с биогумусом. Загубишь весной рассаду – потеряешь год и урожай.
А вот после высадки рассады, на грядках буду применять всё, о чем писал выше. Минералку и пестициды только в крайних случаях.
Это мои кристалоны. Подкормил пару раз рассаду.
Это всходы огурцов, выставлены под светодиоды пару недель назад.
Это огурчики, снятые сегодня 8.01.15 г. на холодном тёмном северном окне. Высаженные в описанный выше субстрат в открытых мешках из лутрасила с подсветкой двумя светодиодными лампами по 10 ватт. Уже с зачатками бутонов.
Геннадий Распопов, г. Боровичи, Новгородская область
08.01.2015
Другие статьи Геннадия Фёдоровича смотрите на Распопов Геннадий Фёдорович, садовод-испытатель из Новгородской области, публикации
Другие статьи по органическому земледелию смотрите в разделе Содержание почвы в саду, новое в агротехнике, органическое земледелие