Биотехнология природного земледелия александра кузнецова, алтайский вариант

Александр Иванович Кузнецов – житель села Алтайского, глава плодопитомника «МИКОБИОТЕХ», новатор, испытатель сортов и природной агротехники, вдумчивый микробиолог и агроэколог. Много лет выращивает плодовые, ягодники и саженцы по своей уникальной агротехнике. Ведёт свою селекцию, в том числе и подвойных форм, на зимостойкость и устойчивость. Изобрёл свой модульный вариант закрытого грунта – плёнка легко и быстро укрывает большую площадь. Возможно, только Кузнецов всерьёз пытается применять микоризообразующие грибы в любительском садоводстве.

Растения в «МИКОБИОТЕХе» развиваются мощно, быстрее обычных, ничем не болеют и рано вступают в плодоношение. Почва не пашется, удобрения и химия не применяются. Плодородие создаёт исключительно богатый комплекс почвенных обитателей, активно разлагая толстую мульчу. Потому и биотехнология: в основе агротехники – «почвенное пищеварение» с помощью сапрофитов. Но не обычное «экстенсивное», как в природе. Живые процессы гумусообразования Кузнецов многократно усилил и довёл до максимума. Его природное земледелие из «экстенсивного» превращается в сверхинтенсивное.

Много лет наблюдая за растениями, Александр Иванович на практике отследил и «кожей прочувствовал», как жизнь микробов, грибов и почвенной фауны даёт растениям всё необходимое: и усиленное питание, и иммунитет, и защиту, и даже «сотовую» связь друг с другом. Сейчас в «МИКОБИОТЕХе» рождается продуктивная биоагротехника для приусадебных участков, экопоселений и малых хозяйств. Кузнецов уверен: даже на десяти сотках можно создать производство, способное обеспечить безбедную жизнь семьи.

Систему «почва-растение» Кузнецов видит исключительно глубоко и цельно. Его взгляд на многое раскрывает глаза. Настоящая статья предваряет большой цикл его работ, по сути – его развернутой концепции и агротехники природного землеДЕЛИЯ.

Мне захотелось обобщить его материалы и рассказать по-своему. Это эссе – результат нашей долгой переписки. Однако нельзя объять необъятное: интереснейшая глава о «тонких материях», воде и информации, а также достижения Александра Ивановича в селекции, в агротехнике плодовых и ягодников, конструкция модульных теплиц и многие ценные наработки остались в его статьях, а также в полной версии эссе (kurdyumov.ru, раздел умных агротехнологий).

Здесь же – главы, посвящённые природной агротехнике и реальным процессам питания растений.

Александр Иванович и Галина Николаевна Кузнецовы приглашают всех земледельцев-природников к общению и обмену опытом. А жителям Алтая и Сибири предлагают продажу своей продукции на месте. По почте саженцы не рассылаются!

Звоните: (38537) 29-9-95 дом., (903) 912-34-94, (960) 945-60-32 моб.

Заходите: http://my.mail.ru/community/sad-i-mikoriza/,

в дневник: http://mikobiotehpitomnik.ya.ru/.

Пишите: [email protected], [email protected],

и на форум: http://forumdacha.ru/forum/viewforum.php?f=33

ПРИРОДА: ОЧЕВИДНОЕ НЕВИДИМОЕ

Факт Природы: на этой планете есть всего одна система земледелия, способная вечно воспроизводить устойчивые растительные сообщества: природная или углеродно-круговоротная. Факт земледелия: или мы грамотно копируем природную систему, воссоздавая процветание биоценоза – или теряем почвы, пищу, здоровье и среду для жизни.

Наука разложила «культурные» почвы на молекулы, но так и не увидела главное: роль органики опада. И не могла увидеть: в культурных почвах этой органики - мизер. Выпаханная почва – по сути, уже не почва. С таким же успехом можно пытаться понять биохимию, исследуя труп.

На самом деле, почва – это буквально: растения-минерало-микробо-грибо-черве-несекомо-растения, бесконечно и циклично использующие друг друга. Абсолютно неразделимая живая реальность: непрерывное общение, обмен информацией, постоянный обмен генами и веществами. Всё здесь влияет на других- фактически, все состоят друг из друга. И только раздробленный ум учёного делит это на части. И мы, начитанные огородники, увлечённо спорим о типе почвы, о минералах, потом о корнях, об органических удобрениях, о червях, о микробах – и никак не можем увидеть почву и её обитателей целиком!

Давайте попробуем. Глянем с высоты самого высокого дерева, прожив несколько лет за полчаса. Проследим от начала до конца путь упавшего листа – всё, что из него родилось и чем закончилось.

Начало начал жизни – зелёные листья. Тут, начавшись с глюкозы, готовится пища для всех обитателей Земли. Годовой «урожай» биосферы – около 240 миллиардов тонн сухой растительной биомассы! Такова растительная жизнь: она кормит. А животная жизнь, разложив органику обратно на воду и углекислый газ, высвобождает энергию Солнца и пользуется ею для всеобщего радостного шебуршания. И мы с вами – больше всех прочих.

Формула фотосинтеза проста: углекислый газ + вода + энергия Солнца = глюкоза – самый простой сахар – и питание, и сырьё для синтеза самых разных веществ. Клетчатка для каркаса, жиры для энергии, разные белки – ферменты, гормоны и питательные запасы, антибиотики, витамины и прочие биоактивные вещества (БАВ) – всё вышло из глюкозы. Конечно, с помощью массы других атомов и молекул. Их растения выуживают из почвы корнями.

Но как именно? Это – главный вопрос агрономии. И представьте, он всё ещё открыт!

Читая учебники, мы просвещённо верим: всё просто, как в гидропонной теплице. Мол, в растворе есть всякие соли, всосал, как насос – и вся премудрость. Это было бы здорово! Увы, практика удобрений вовсе не так однозначна. Во-первых, одни элементы тут же вымываются, а другие прочно связываются и уже нерастворимы. Во-вторых, растворённые соли конфликтуют и конкурируют – одни блокируют усвоение других. В-третьих, и главное: отнюдь не солями едиными живо растение! Из плодородной почвы оно получает кучу органических веществ: углеводы, аминокислоты, органические соли и разные БАВ, вплоть до гормонов. Где и как всё это взять?

В природе этих проблем нет. Все растения сами производят сырьё для своего питания – органику. Но «в сыром виде» усваивать её не могут. А вот в «варённом» – ещё как! Варят, то есть переваривают органику почвенные обитатели. Окончательно готовят её, сервируют и подают грибы и микробы. А растения не просто едят, но и заказывают, платят и управляют этим сервисом. Это - основной, динамический способ питания растений. По сути, каждый корешок в естественной почве – единый живой «корне-микробо-гриб». Этому симбиозу столько же миллионов лет, сколько самой флоре. И пока симбиоз активен, продуктивность растений оптимальна и бесконечна.

КЛАДОВЩИКИ. КИСЛЫЙ И СЛАДКИЙ ГУМУС

Не только мы отмечаем Праздник Урожая. Осенью вся накопленная органика – листья, стебли, часть веток – падает на землю, а в почве отмирает столько же старых корней. Налетай, кто может – энергию дают! И начинается пир сапрофитов – потребителей мёртвой органики.

ПЛОДОРОДИЕ. Способ питания сапрофитов – сама суть плодородия. Все сапрофиты всасывают питательные органические растворы. Животные, в том числе и мы с вами – поверхностью кишечников, а микробы и грибы – всей поверхностью клеток и грибниц. Но чтобы всосать, надо сперва приготовить «усвояемый суп». Для этого существуют ферменты.

Ферменты – самые сильные в природе катализаторы и ускорители биохимических реакций. Под их руководством распадаются полимеры, рвутся разные молекулы – или наоборот, соединяются. Пищу расщепляют пищеварительные ферменты. Их сотни, у всех свои. Микробы с грибами выделяют их прямо наружу, буквально напитывают ими всё вокруг себя. Растворилось – прошу к столу, супчик готов! Почвенная живность не отстаёт: выдаёт с помётом и ферменты, и новых микробов. Представьте себе этот живой «бульон из желудочного сока»: в каждом грамме почвы под мульчёй – миллиарды едоков, и все, кто может, переваривают всё, что доступно!

Вот тут, во время пира, растения и получают свою законную долю – массу питательных и биоактивных веществ. И получают изрядно! Специально для этого созданы поверхностные, питающие корни – половина, а у деревьев, злаков и прочих мочковато-корневых – три четверти корневой системы. Эти корни распластаны под мульчёй, простираясь далеко за пределы крон. Их задача – быстро всосать пищеварительный микробный «бульон», ухватив каждую росинку, любой дождик. В это же время глубинные или водяные корни достают из подпочвы воду и толику минералов – их растворила и сохранила в гумусе, опять-таки, поедаемая органическая мульча.

Итого: плодородие – это активное почвенное пищеварение, поедание и переваривание. Почва ест – растения питаются и процветают. Кончилась еда – плодородие исчезает. И корни вынуждены довольствоваться «запасными консервами», в которых почти нечего есть – гумусом. Выживание и какую-то урожайность он обеспечит. Но ведь нам нужна высочайшая продуктивность!

ГРИБЫ И БАКТЕРИИ. 80-95% всей природной органики разлагают грибы. Это самые древние, многочисленные и удивительные существа планеты. До сих пор мы изучили, дай Бог, 5% их видового разнообразия! Самый мощный ферментный аппарат – у них. Самые приспособляемые и изменчивые, самые устойчивые к холоду и жаре – они. Питаться могут чем угодно, живут везде, где есть хоть какая-то влага. Там, где освоился гриб, микробам достанутся только «объедки». Разные грибы пронизывают почву и древесину, создают симбиозы и паразитируют, развивают многотонные грибницы... Но как раз те, что нужны растениям, живут только в естественной среде – плугов и удобрений не выносят.

Бактерии проигрывают в мощности, зато берут числом и уменьем. У них больше разных способов питания: окисляют и органику, и минералы, могут и фотосинтезировать. Больше разных сред обитания: многие живут без воздуха. Чуть не половина сапрофитных бактерий получает корм и от растений, напрямую сотрудничая с корнями.

По ходу пира наши опавшие листья трансформируются в пространстве и времени. Прежде всего, едоки сменяют друг друга по мере съедания и «переваренности» корма. На свежачок опада сразу накидываются любители растворимых сладких «компотов» – компания дрожжей, бактерий-азотофиксаторов и низших грибов. За ними следуют едоки крахмала, пектина, белков – более сильные грибы, бактерии и актиномицеты. Съев удобоваримое, они уходят, оставив «за столом» более медлительных, но более мощных разлагателей грубой клетчатки и лигнина. В основном это сенные палочки, грибная «плесень» типа триходермы, да разные шляпочные грибы типа опят. Они работают на границе подстилки с плотной почвой. Тут уже одна труха, прожилки, но и они будут съедены и просеяны ещё ниже.

В это же время в почве поедаются миллионы отмерших корней. У них двойная роль: и пища, и структура. Именно их каналы – первые квартиры и дороги для почвенной фауны, быстрые пути для новых корней, дрены для воды и «трахеи» для газов. Эта сеть, вкупе с ходами червей – та самая истинная, функциональная, многолетняя почвенная структура, которую невозможно создать с помощью машин.

Разлагая органику, сапрофиты не просто сменяют друг дружку, но и располагаются послойно: чем глубже слой, тем труднее переваривать его остатки. Едоки строго распределили зоны кормёжки, и каждый знает свою часть работы. А корни знают структуру едоков. Вот откуда столько неувязок, когда органику закапывают или запахивают. И так мало пользы, когда её компостируют в кучах.

КИСЛЫЙ ГУМУС. В самом нижнем слое подстилки - самые несъедобные «объедки». Да и кислорода тут меньше. Грубые остатки органики, сама грибница, продукты микробов, их ферменты – всё «выпадает в осадок», уплотняется, полимеризуется и темнеет. Это – первичный гумус микробно-грибного происхождения или «кислый гумус», «мор». Он связывается с минералами, создавая тот самый «обменный» или «поглощающий почвенный комплекс» (ППК), что описан в агрохимии, как основа плодородия.

Реальный гумус – огромное вольное разнообразие полимеров. Гуминовые кислоты, фульвокислоты, гуматы, фульваты – их выделяют весьма условно. Для практики это совершенно не важно. Важнее вот что: количество и качество гумуса зависит не от состава микробов, а от климата, исходного «корма» и минеральной части почвы. Гумус накапливается только в умеренном и холодном климате: здесь сапрофиты и растения не успевают усвоить всю органику – зимой спят. В сухих степях её оседает больше всего: там ещё и в засуху органика почти не усваивается. В дождливых лесах Нечернозёмья гумуса меньше: изрядная его часть вымывается водой.

В почве гумус живет тысячелетиями – если, конечно, почву не перелопачивать. Разлагать его прочные соединения могут только «специалисты» с особо мощными ферментами – грибы (шампиньоны, зонтики, навозники, говорушки, дождевики и пр.) и некоторые бактерии. Но энергии тут уже почти нет, есть почти нечего, и охотников крайне мало.

Фактически, гумус – не источник пищи, а её осадок, «отстойник». Не причина, а следствие, свидетель плодородия. Гумусный слой – признак того, что здесь долго разлагалась органика растений. Он показывает, насколько нестабильно почвенное пищеварение. Для почвы это – общий буфер, склад-накопитель и среда обмена минералов и некоторых БАВ. Растения получают из гумусной кладовой очень мало. Гумус – такая же «пища» для них, как для нас, пардон... осадки канализации.

Настоящая пища для корней – продукты переваривания органики, поставляемые «кухней» сапрофитов. Наглядное доказательство – влажные тропические леса. Здесь грибы и микробы активнее на порядок, органика разлагается круглый год, и гумус просто не накапливается – не успевает. Самая буйная на планете растительность – результат бесконечного пира сапрофитов, а вовсе не гумусных запасов!

Итак, роль сапрофитов проста: расщеплять и поедать то, что дали растения. Мульча – «откормочный цех» почвы, а в целом – система возврата. Микробов и грибов тут плодится тьма тьмущая. В лесу их больше, чем червей: до 400 г на кв. метре, а в степи ещё вдвое больше! Выделяя свои продукты и углекислый газ, сменяя друг друга и сами становясь пищей, они постепенно отдают растениям всё, что от них получили. И лишь крохотные остатки этой органики переходят в состояние стабильного гумуса.

Кстати, давайте уточним кое-что о сапрофитах. КУДА ДЕВАЕТСЯ МЁРТВЫЙ МИКРОБ? Судьбу «откормленных» микробов агрономы разумеют по-разному. Например, Ю. И. Слащинин пишет, что они массово гибнут, а их трупы – «перегной» – достаются растениям. Другие пишут, что микробы массово поедают друг друга. Кто же прав?.. На самом деле, в природе нет ни массовой гибели микробов, ни массового взаимопожирания.

Не могут микробы просто взять и умереть. В природной почве такое немыслимо. Здесь при любом ухудшении условий микробы уходят в анабиоз: превращаются в споры, собираются в микроколонии, окукливаются в цисты. В таком виде им нипочём десятилетия засухи или бескормицы.

Съев весь корм, колония сначала растворяет своих же (аутолиз), и на их продуктах откармливает элитную зондеркоманду – продолжателей рода. Те наелись и, опять же, – в цисты, в споры. Кстати, именно так многие микробы-симбионты помогают корням: отработав, частично аутолизируются – ешьте наш азот! А мы снова в «спорах» переждём. Так и ждут разные микробы нового «приказа»: стоит появиться корму, ффух! – и вот вам новая колония, как огонь полыхнул.

Конечно, микробы-антагонисты часто травят друг дружку ядами, но это, скорее, предупредительный контакт: корм отбить, территорию охранить. Массовая гибель тут – большая редкость. В основном, микробы одного типа питания сотрудничают, создавая дружественные ассоциации. Есть в микромире и направленный паразитизм: одни могут поедать других, чтобы впитать их сахара или белки. Однако и этого в почве совсем немного: сапрофиты умеют отлично защищаться, а сами друг друга не едят.

В общем, «труп микроба» в почве – раритет. Ну, конечно, если вывернуть пласт, многих бактерий убьёт ультрафиолет. Или шарахнуть почву ядом типа нитрафена – тут уж сдохнет всё, что попалось под руку с опрыскивателем. Но и тут, как только жизнь оклемается, «трупы» будут кем-то съедены. В почве никакая органика не лежит дольше минуты – всё тут же съедается! И микробные клетки – в первую очередь.

Растения, как уже упомянуто, «есть микробов» не могут: у них ферментов для этого нет. Есть, правда, хищные растения – те и насекомых переваривают, и даже лягушек. Но в наших садах они не водятся.

Видимо, больше всего живых микробов поедает почвенная фауна - вместе с кормом. В компостной куче или под мульчёй почти весь объём органики могут переработать черви, и большинство микробов пройдёт через их кишечник. Часть, конечно, усвоится. Именно микробы – главный азотный, то есть белковый корм червей, основа почвенного белкового обмена. Однако большинство выйдет наружу мало что живыми – ещё и в компании новых сотоварищей.

В общем, в почве всё время пульсирует, целенаправленно множится и тухнет постоянное сообщество микробов, их спор и цист. Нам важно, что численность активных кадров и активность их ферментов зависит от корма, влаги и тепла на данный момент. Это и есть главные условия пищеварения. Они же – условия возврата азота и углерода. Эти же условия определяют, в биологическом смысле, скорость общей гумификации. Иными словами – активность динамического плодородия.

ПОЧВЕННАЯ ЖИВНОСТЬ. Итак, с микрофлорой ясно. Довершим картину: есть ещё почвенные животные, и они – не последние гости на пиру. Их вклад в распад органики в лесу – 10-15%, в степи – до 25%, а в органических грядках ещё больше.

Главные животные почвы – черви. Все подробности о них - в главе о червях. Затем насекомые, моллюски, многоножки, мокрицы и всякая мелочь - клещи, ногохвостки, коловратки и прочая мизерность, вплоть до инфузорий. Работают они так же последовательно и живут так же послойно. Их кишечники – свёрнутая внутрь наружная среда: здесь также работают микробы-сапрофиты, но во многом свои. Свои у них и ферменты, и свой конечный продукт.

Представьте: миллиарды подвижных тварей постоянно запихивают и пропускают через себя свою «внешнюю среду» – почву с органикой, обогащая её микробами, ферментами и БАВ, а заодно перемешивая, растаскивая и распределяя по своим норам. Вот она – живая архитектура плодородия! Без этой «механики» почва не смогла бы ни дышать, ни накапливать подземную росу, ни поддерживать и питать юные корни.

Жуя прелые листики, черви пожирают и размножают в себе массу микробов: это их белковый корм. Кстати, древнейший симбиоз! Так же поступают и жвачные животные: кормят сеном-соломой своих «пищеварительных» микробов – а потом и усваивают их почти половину. Чистый белок! Вот почему тибетские яки, живущие на одной сухой траве, совершенно не страдают хилостью и дистрофией. По оценкам самой долгоживущей нации – японцев – человеку нужно в сутки не более 20 г пищевого белка в сухой массе, то есть три-четыре куриных яйца. Остальное он так же получает из собственного кишечника. Конечно, если питается, как надо, и не убивает свою флору всякими пестицидами типа консервантов.

Наевшись, почвенная живность радостно ползает, лазает и роет километры всяких ходов. И все выполняют одну главную задачу: 3/4 съеденного выдают в виде помёта, старательно обогащённого микробами. То есть поддерживают белковый обмен почвы. Особенно преуспели в этом черви. Фактически, они рассеивают микробов и по-своему гумифицируют органику. Помогают им и мокрицы, и разные личинки. После них образуется «сладкий гумус» - «мулль». Он намного питательнее и биологически активнее, чем мор - «кислый гумус». Тут ещё много энергии и питания для микробов и грибов – а значит, и для корней. Поэтому его и называют «биогумусом».

ИТОГО. Плодородие – сам процесс гумусообразования. Полноценное питание растений – это пищеварение почвы в буквальном смысле этого слова. Продукты прикорневых микробов, помет почвенных животных и пищеварительные растворы сапрофитов, разные БАВ, фиксированный азот и мобилизованные минералы – единый питательный «коктейль» со стола сапрофитов. И даже углекислый газ, насыщающий все это – их «газообразный кал».

Люди пытаются воссоздать этот «коктейль», усложняя удобрения до смесей биогумусной вытяжки и микробов с комплексами минералов. И тщетно. Ведь растениям важна не просто сама пища, но и возможность усвоить её: здоровье корней, стабильная влага, угольная кислота, активная структура и физика почвы. Эти условия создают только пирующие сапрофиты.

А гумус – их общие «экскременты» в конечной стадии распада и минерализации. Гумусный слой, по сути – огромная многолетняя коллективная «какашка» червей, грибов и микробов. Запасной, резервный, буферный, но не плодородный слой. Плодородие родится не в гумусе. Наоборот, гумус родится в плодородии!

И родившись, он стал незаменимым для жизни. Сейчас на планету сыплются «какашки человечества» – около десяти миллионов видов токсичных веществ. Мы давно уже должны были бы отравиться, задохнуться в собственных отходах. Но, к счастью, есть гумусный слой. Именно он связывает и удерживает соли тяжелых металлов, радионуклиды, нефтяные производные, пестициды и прочие яды. Гумус – биологический фильтр земной суши. Не уничтожать, не расходовать – создавать его надо!

«ГНОЙ». Странно, но факт: большинство учёных, да что там! – даже сами земледельцы-органисты до сих пор путаются с органической частью почвы. Гумус, компост, перегной и даже навоз для них - как бы одно и то же: «органика». Их отношение: «органика хороша любая, и нечего тут усложнять». Это верно лишь в том смысле, что хоть какая-то органика лучше, чем никакой. Однако в естественном плодородии органика органике – рознь. Внесём ясность.

Гумус – конечный продукт ферментативного распада органики, естественный предел её минерализации.

Компост (в переводе – «смесь, смешанный») – продукт естественного, ферментативного, микробно-черве-грибного процесса гумификации. При правильном компостировании получается аэробный продукт – органика разлагается в присутствии воздуха. Углерод органики биологически окисляется. Отсюда – химический и микробный состав дёрна и подстилки, комфортность для корней, и главное – санитарная чистота, отсутствие патогенной микрофлоры. Кислород – главное условие нормального почвенного пищеварения.

Навозы и помёты – совсем иное дело. Нигде в природе вы не найдёте больших навозных куч! Перегной, то есть навоз, перегнивший в куче – в основном продукт анаэробного процесса: гниения или брожения. В анаэробной среде совершенно иной состав микробов. Сначала куча «загорается» – разогревается до 60-70°С: работают термофильные бактерии, которым, как и многим плесеням, жар не страшен. Мы радуемся: куча обеззараживается! Да, многие патогены гибнут, но далеко не все – большинство спор остаётся. Зато аэробные сапрофиты вымирают массово. Гибнут и кишечные бактерии – защитники организма от патогенов. Остаются плесени и гнилостные бактерии – поедатели белков навоза. При этом выделяются токсичные и зловонные продукты бескислородного полураспада органики: сероводород, метан, индол, скатол и пр.

Конечно, потом, когда куча уже перестаёт, пардон, «пахнуть», она начинает постепенно дышать, и в неё прорастают сапрофитные грибы – с поверхности начинается аэробный процесс. Но гнилостные микробы никуда не делись. А среди них тьма всяких бацилл и кокков – возбудителей раневых инфекций, гангрен и прочих бед. Буквально – создателей «ГНОЯ». И возбудители грибных болезней – плесени и гнили – тоже сохранились, потому что не было сапрофитов с их антибиотиками.

В природе такое бывает лишь редко и недолго – в трупах, в ямах с водой, в болоте. Но для почвообразования гниение не характерно. И «переГНОЯ» там нет и быть не может. Почва пахнет почвой. Будь там «гной», мы постоянно затыкали бы носы!

Конечно, слово есть слово. Обычно «перегноем» называют уже полностью выветренный навоз, отлежавший минимум года два. Видимо, главное тут не «гной», а «пере», в смысле «уже давно, с избытком перегнил». Но и такой перегной, по сути, малополезен: вся «кухня», вся энергия и работа органики уже пропали даром! Есть один способ природного внесения навоза: в виде мульчи, тонким слоем на почву, как это делают все животные.

Наконец, общее слово «органика» – это, в строгом смысле, всё органическое: и мёртвое, и живое. Всё, в чем есть неокисленный углерод. В земледелии «органикой» называют неживую часть органического вещества. Для агрохимика «органика» – всё, что сгорело в муфельной печке. Тут опять все запутано! Учёные говорят «органика», а сравнивают разные содержания гумуса, совершенно не обращая внимания на растительные остатки. И на таких вот опытах построена наука о почве!

Итак, накопители и кладовщики – сапрофиты – обогащают почву всевозможным питанием. Для кого всё это? В конечном итоге – для растений. Круговорот замкнулся.

Чтобы произвести питательные вещества и гумус, нужны сапрофиты и черви. А чтобы досыта накормить растения, необходимы симбионты-снабженцы.

Проснувшись по весне, корни начнут изо всех сил «высасывать» растворённую мульчу, добывать воду и пищу для ростового взрыва. И вот тут их возьмут на попечение симбионты: прикорневые микробы и микоризные грибы. Это уже не накопители – наоборот, это добытчики, транспортёры, курьеры и доставка на дом. Их задача – отдать накопленные запасы обратно растениям.

О них и поговорим.

СНАБЖЕНЦЫ: РИЗОСФЕРА И МИКОРИЗА

Факты, наблюдаемые уже лет сто, показывают: полноценное питание растений в природе опосредовано. Его обеспечивают две группы «снабженцев». Первая – прикорневые или ризосферные микробы. Вторая – грибы, образующие микоризу.

Активно стремясь выжить, растения реагируют, «думают» не столько кроной, сколько корнями. Точнее, их юными растущими кончиками и корневыми волосками. Именно волоски – активная зона обмена. Обмена, а не только всасывания! Корни постоянно выделяют разные БАВ, сахара и даже аминокислоты. В почву уходит до 40% всех продуктов фотосинтеза. Для чего? Так растения целенаправленно привлекают и разводят нужных микробов и грибы. Корешки растут буквально в чулке из симбиотических колоний.

Вдумаемся: Природа не расходует зря ни одной молекулы, а тут – почти половина всей энергии! Разумеется, её тратят недаром. В обмен растения имеют полное и всестороннее почвенное обслуживание, от питания и ферментов до гормонов и антибиотиков. Отдавая то, что имеют, растения получают то, чего сами взять не могут. Напомню: в обмен на грамм азота азотофиксаторам скармливается 10 г глюкозы. Так же, по бартеру, «вымениваются» защитные вещества, стимуляторы, минералы, а у грибов – и вода. Это истинный симбиоз – тут все заботятся друг о друге. Без него у растений не было бы шансов выжить.

РИЗОСФЕРА

Микробы ризосферы изучены весьма детально. Это разные сапрофиты – любители сахаров и прочей легкодоступной пищи. Кто-то фиксирует азот воздуха, кто-то переводит его в простые соли, кто-то растворяет фосфор и калий, кто-то поставляет микроэлементы, кто-то ферментативно разлагает прочные гуминовые соединения. И все, как зеницу ока, берегут своих кормильцев – растения – от нападения патогенов, выделяя целые комплексы фитонцидов и антибиотиков. Например, сапрофитный гриб Trichoderma lignorum производит до 60, псевдомонада – до 40, а сенная палочка – около 80 «лекарств»! В природе растения почти не страдают от корневых гнилей – в отличие от «интенсивных» полей.

И вот самое важное: ассоциация ризосферных микробов тонко управляется самим растением. Выделяя то или это, растение буквально заказывает, что ему сейчас нужно. Например, нужен азот – выделяет углеводы и сигнальные вещества для азотофиксаторов. Те съели всю свою порцию, дали пайку азота - и сошли со сцены: ужались, растворились, окуклились в цисты. Теперь нужен фосфор, и растение чем-то кормит фосфомобилизаторов. Псевдомонадам – защитникам от гнилей – нужен азот, и выделяются аминокислоты. И так весь сезон: корни растут, и вокруг них всё время «дышит» состав и «качается» численность обслуги.

Иначе говоря, ризосфера – не просто поставщик, но и дозатор. Те фантастические датчики, с помощью которых учёные выращивают в фитотронах невероятно продуктивные растения – вот они. Если есть все условия для микробов, растение использует их по максимуму. Многие, первыми из коих были изучены бобовые, поселяют симбионтов прямо в своих корнях. Прорастающее семечко «ловит» симбионтов в почве, быстро прикармливает, поселяет и начинает «доить». Иначе всходы развиваются крайне медленно и хило.

Теперь проясним общую картину. Считается, что главная работа ризосферы – поставка азота в обмен на сахара. И многие идеализируют азотофиксацию, считая её чуть ли не единственным источником азота. На деле её возможности ограничены: плата азотофиксаторам очень недешева – 10 частей глюкозы! Посему в природе используется более простое и малозатратное азотное питание: прямое всасывание органических растворов. Высокий белковый обмен почвы может давать азота на порядок больше, чем все азотофиксаторы. Чем больше в почве грибов и бактерий, тем активней белковый обмен, и тем проще получать азотистые вещества. В том числе и органические, типа аминов и аминокислот. Как же их не заметили? Да просто: их азот агрохимическим анализом не определяется.

Крохотным бактериям и микрогрибкам, хоть их и триллионы, недоступен большой объём почвы. Сравните с ними шляпочный гриб: центнеры его грибницы могут пронизывать сотни кубометров почвы. И представьте, вся эта живая масса напрямую подключена к корням растений!

МИКОРИЗА

В добывании почвенных растворов и воды грибам, видимо, нет равных. Всасывающая поверхность грибниц в сотни раз больше, чем у корней. Некоторые грибницы расползаются на сотни метров и весят по нескольку тонн! И если растения могут усваивать только «юный», подвижный гумус, то сапрофитные грибы с их ферментным аппаратом – почти всё: и фосфориты, и прочные гуматы, и клетчатку с лигнином, а уж органику мульчи «глотают, не жуя».

Растения и грибы нашли друг друга ещё на заре живого мира, и с тех пор вместе. По разным данным, до 95% всех наземных растений могут создавать микоризу с дружественными грибами. Их совместная эволюция закреплена генетически: у растений давно найдены «микоризные» гены, а у грибов – «растительные». Фактически, правильнее говорить о микоризе, как о самостоятельной, особой форме питания растений.

Для природных почв микориза – не исключение, а основное правило. А вот в пахотных почвах эти грибы жить не могут: не выдерживают разрушительного землепользования. Немногие опыты показывают: микориза может значительно увеличивать урожайность. Судя по всему, культурные растения здорово без неё страдают! Но вот парадокс: этих исследований – единицы. Дельную информацию о микоризе найти очень сложно: о ней знают лишь немногие учёные да самые продвинутые лесоводы. А для полей, садов и огородов микориза – terra incognita, белое пятно в агронауке.

В отличие от микробного симбиоза, микориза – очень плотный контакт, почти срастание. Грибница может оплетать корни, присасываясь, а может врастать своими выростами прямо в клетки корневых тканей. Здесь тот же взаимовыгодный обмен: растения грибам – сахара, а грибы растениям – воду и свои растворы, как минеральные, так и органические. Причём, судя по всему, в огромных количествах: подключившись к грибу, многие растения даже перестают выращивать корневые волоски! Фактически, образуется единый организм: грибо-растение.

Показано: корни сами ищут подходящую грибницу, и особенно усердно, когда чего-то не хватает в питании. Факт: почти все растительные семейства – микоризники. Некоторые вообще без грибов жить не могут. Вспомните хотя бы вересковые, брусничные, облепиху, орхидеи, лещину – те без своего гриба даже не прорастают. Из грибов же симбиотируют далеко не все, а лишь те, кто привык питаться растительной глюкозой. Эти тоже сами ищут в почве своего партнёра – стремительно растут в сторону учуянного сахара. Даже споры этих грибов не прорастают без корневых выделений своего партнёра. Как именно сотрудничать, партнёры «догадываются» по сигнальным веществам. Если ризосферные микробы – специализированные магазины, то микориза – гипермаркет. Видимо, обмен продуктами и питание она увеличивает многократно. И прежде всего – снабжение водой. Главная беда наших растений – дефицит влаги. В среднем, на сухой килограмм урожая растения испаряют 500-900 литров воды. Почти вся она улетает через листья, обеспечивая упругость, прохладу и поступление питания. При любой нехватке воды растения тут же замирают, снижая испарение. Для них это способ выжить, а для нас – потеря урожая. Мы усердно поливаем огороды, но наши шланги и лейки – убогость: вода, вылитая на голую поверхность, почти вся испаряется, не дойдя до корней. Такой полив лишь охлаждает и засоляет почву.

А вот микориза – настоящий насос. В природе она фактически исключает водный дефицит, усиливая подачу воды часто на порядок. И вода это не простая – растворы минералов, витаминов и других важных БАВ.

Особо важна поставка калия (К) и фосфора (Р), без которых нет нормального развития и плодоношения. Их запасы в почве огромны, но калий быстро вымывается, а фосфор, наоборот, очень трудно растворить. Фактически, частый дефицит Р и К – результат отсутствия микоризных грибов. Только они дают эти элементы строго по потребности, моментно и сбалансировано. Никакой агроном не в состоянии соблюсти такой режим.

Однако прямой дефицит Р и К – только часть проблемы. Это – простой «стройматериал». А есть ещё и сами «строители»: гормоны развития. Закладкой плодовых органов руководят именно они. И тут открывается ещё одна, возможно, главная роль микоризы.

Оказывается, сам гриб может стимулировать свои растения, поставляя корням определённые гормоны. Например, гиббереллины, растительные гормоны роста. Их найдено уже под сотню! Но грибу не обязательно синтезировать их: грибницы могут их просто передавать, создавая «коммуникационные сети». Опыты с использованием «меченых атомов» показали: гриб подключается не к одному, а сразу ко многим растениям, связывая их в единую систему. И питательные вещества, и гормоны, и БАВ циркулируют через грибницу, поддерживая жизнь всей популяции. Фактически, с помощью микоризы растения и кормят, и стимулируют друг друга. Сверхорганизм биоценоза – не метафора, а буквальность. Он имеет даже «кровеносную систему»! Не потому ли сеянцы вблизи «родителей» развиваются лучше?.. Не потому ли растительные сообщества так устойчивы?

Но и биохимия – ещё не всё. Очевидно, микориза – энергоинформационная система связи через корни. Известно: повреди одно растение – тут же реагируют и его соседи по почве. Не микориза ли виновна в столь быстрой реакции? Молдавский академик С. Н. Маслоброд установил: живые клетки и части растений активно общаются с помощью мгновенных кодированных электромагнитных сигналов. Почему грибница должна быть исключением?

Нельзя забывать и об информационной памяти самой воды. Вода – система молекулярных кластеров, жидкий кристалл, буквально считывающий информацию со всего, с чем соприкасается. Вероятнее всего, симбионты общаются и через воду. Природная вода, проходя через грибницу, несёт растению отчёт о потребностях гриба. Раствор, поступающий от растения, несёт грибу данные о нуждах растения.

Нам важно следствие этого общения: гриб интенсивно забирает «лишнюю» глюкозу, давая растению всё для её нового синтеза. Фактически, микориза стимулирует усиление фотосинтеза.

Итак, микориза – это полноценные «еда и питьё», передача гормонов и информации. А в целом – качественная связь растений, устойчивость и цельность биоценозов. Вот так, – ни много, ни мало! А если учесть и прямой обмен генами, то ясно: с корнями сотрудничает цельная, неразрывная система «грибы-бактерии-фауна». И в ней бурлит такой интенсивный обмен и продуктами, и информацией, который мы не в силах даже вообразить!

Страшно подумать: в копаных и паханых почвах все эти древние природные механизмы убиты. Полезным грибам тут не выжить, фауны крайне мало, а микрофлора наполовину патогенная. И вот это – «агрокультура»! Может, потому и живут наши растения, как одинокие путники в пустыне: страдают, болеют и плодоносят не каждый год? И клянут судьбу, попав в горшки, стерилизованные теплицы и «вспушённые» грядки, и морщатся, глотая удобрения и яды?.. То «прут в лопух» и почти не дают плодов, то покрываются плодами и чахнут?..

«Но они, тем не менее, плодоносят!» – возразите вы. Да. Но чаще всего – вынужденно, от страха, для скорейшего продления рода. Для промышленной агрономии это норма. Но не надо путать дефицит и нормальное питание! На самом деле, растения могут быть нормально накормлены. И обслужены, и связаны между собой. Они могут и бурно расти, и хорошо плодоносить каждый год, без периодичности и утомления. Это возможно – если их обслуживают микоризные грибы и симбионты ризосферы, а помогают им черви. В этом и состоит суть природного землеДелия.

Итак, вырисовывается ясная картина растительного питания. Основное питание – динамическое, за счёт почвенного пищеварения. Дополнительное, запасное – гумусное. Как первое, так и второе в норме – симбиотическое, и лишь при невозможности симбиоза – автономное.

ПЕРВЫЕ ОПЫТЫ С МИКОРИЗОЙ

Кроме Кузнецова, в моем обозримом пространстве нет никого, кто изучал бы микоризу на практике. Результаты его пятилетней работы столь же значимы, сколь и необычны. Постараюсь не упустить ни одной детали.

Юг – это возможный дефицит влаги при избытке тепла и питания. Дал нужную влагу – микробы настолько активизируются, что растения и без микоризы часто жируют. У сибиряков наоборот: влаги много, а вот тепла и питания – дефицит. Тут хозяева – в основном грибы, самые холодостойкие из сапрофитов. Ферменты грибов работают при более низких температурах. Известно: чем севернее, тем больше микоризы в биоценозах. Почему не использовать этот огромный резерв с садовыми растениями?

В 2003-м Александр Иванович начал опыты с обычными съедобными грибами: почти все они – известные сожители деревьев. Поскольку неясно, какой гриб с кем задружит, набирал побольше разных. Иногда «охотился» в старых заброшенных садах: здешние грибы наверняка в родстве с плодовыми деревьями. Тут Кузнецов находил свинушки, грузди, волнушки, сыроежки, мухоморы и разные «поганки» – сорные пластинчатые грибы. «Сеял» грибы просто: вымачивал спелые шляпки и поливал мульчу «грибной водой». Или «удобрял» почву трухой из молотых шляпок.

Братцы, нам всем пора начать сеять грибы на своих участках! Лучше всего брать белые, подосиновики, подберёзовики, дубовики, подтопольники (имена говорят сами за себя!), маслята, моховики и рядовки, а так же любые сыроежки, грузди, мухоморы и разные «поганки». Определённо не стоит вносить в почву поедателей древесины, особенно живой: опёнки, вёшенки, трутовики. Их лучше выращивать «на мясо», отдельно, скармливая им гниющие стволы и брёвна. Есть и откровенные пожиратели органики: шампиньоны, зонтики, навозники, говорушки. Их лучше использовать, как помощников в компостировании толстой органической мульчи, особенно из навоза. Увидите в продаже биопрепарат ТРИХОДЕРМИН – тоже берите. Trichoderma lignorum («зелёная плесень») – сильнейший поедатель целлюлозы, один из главных разрушителей подстилки. Больших грибниц не создаёт, но всё же сотрудничает с питающими корнями, а некоторые виды образуют подобие внешней микоризы.

ПЕРВЫЕ РЕЗУЛЬТАТЫ не просто обнадёжили – ошеломили. Оказалось, под опилочной мульчёй охотно селится тьма разных грибов, в том числе и шляпочных. Все их фотографии Кузнецов разместил на

http://my.mail.ru/community/sad-i-mikoriza/1/

и

http://fotki.yandex.ru/users/41566412/album/55540/,

а тут упомяну о главных.

Рядовки, по-местному «подтопольники», – явные симбионты: растут только в тополиных лесополосах, образуя мощные «ведьмины круги». Появились под кустами малины и бесшипой ежевики «Агавам» – именно там, где Кузнецов поливал мульчу грибной водой. Малина повела себя очень необычно. Ремонтантный сорт «Недосягаемая» начал плодоносить в середине июля – невероятно для Сибири, на три недели раньше обычного. Побеги давали боковые обрастающие ветки снизу доверху. Отдав урожай за месяц, кусты выгоняли новые нулевые побеги и продолжали плодить в темпе ежедневного сбора ягод. Если каждый день не собирать, ягода переспевает! С годами эти кусты становятся всё мощнее, продуктивность растёт. Сейчас ягоды «Недосягаемой» достигают уже 8-10 г, а некоторые тянут и на 12!

В питомнике под саженцами плодовых выросли разные грибы, но налицо эффект: явное улучшение качества саженцев при нереально высокой плотности посадки. Теперь вместо 4-5 штук на квадратном метре их сидит 30-40, но качество не ухудшается: продал весной - зацветают в этот же год.

ПЕРВОЕ ЦЕННОЕ ПРИОБРЕТЕНИЕ – весёлка обыкновенная. Она стала настоящим открытием сезона 2006. Начав с земляничных грядок, за год она разрослась почти вдесятеро – расширила грибницу на три-пять метров, возникла в других местах и дала сотню плодовых тел. В лесу веселка дает по два-три плодовых тела, а в опилочной мульче питомника – по 7-10 штук, да вдвое толще обычных! Дело, видимо, не просто в питании: это явный признак удачной микоризы.

Три года Кузнецов испытывал германский препарат МИКОПЛАНТ, содержащий споры микоризообразующих грибков рода гломус. Однако гломусы – «обязательные» симбионты: без контакта с корнем не прорастают или гибнут. К тому же, эти «южане» весьма теплолюбивы. В Сибири надо разводить универсалов – симбионто-сапрофитов. С ними нет проблем – пришлась бы по вкусу мульча.

Весёлки – именно такие универсалы. Сапрофиты и симбионты, причём редкие, краснокнижные. По данным редкой литературы, сотрудничают с дубом, буком и некоторыми другими деревьями. Их незрелые плодовые тела – тугие белые «дождевички». Споры в них ещё не готовы. Так они сидят с неделю, и в юном возрасте съедобны. Можно есть гриб и сырым: его студенистый «сок-желе» мощно стимулирует пищеварение и оживляет желудок лучше любого «мезима». А потом, обычно утром, «яйца» лопаются, и из них на глазах, по сантиметру за пару минут, поднимаются конусные шляпки на ажурных ножках. Шляпки покрыты вонючей бурой слизью - зрелой споровой жидкостью. На неё тут же налетают разносчики спор – мухи, пчёлы и бабочки. К вечеру остаётся один «скелет сморчка».

В саду Кузнецова весёлки несколько лет росли под яблоней, не уходя далеко в стороны. А появившись в грядках, произвели маленькую революцию. Лилии заметно раздобрели: стебли потолстели, в соцветиях раскрылось по 10-16 цветов вместо 3-5. Земляника «Сеянец Елизаветы», обычно дающая ягоды по 40-45 г, дала ягоду в 65 г и урожай в полтора раза выше. Лучше стали развиваться и малина с ежевикой. В 2009-м, видимо, подключился и виноград: «Амурский-1» заложил грозди до 30 см.

Характерно, что грибы разрастаются явно в сторону новых грядок, а не просто по мульче. Плодоносят только в грядках, на большинстве имеющихся в сети фотографий, – в земляничных. Активно съедают грубую органику опилок, листьев, шелухи. Белая грибница пронизывает весь слой мульчи, и он тает на глазах. На корнях выкопанных растений, в том числе и земляники, обнаруживается мощный мицелий. Предположение Кузнецова: веселка – перспективный универсал, симбионт не только деревьев, но и травянистых растений. А усиленное цветение и плодоношение – результат грибных гиббереллинов.

И вот ещё чудо: за три года в питомнике появились два новых вида весёлки (псевдовесёлка и весёлка хрящеватая) и два новых представителя этого же семейства – сетконоска сдвоенная и мутинус собачий. В год – по новому виду, причём – сами собой! Случайность ли это? Нет. Очевидно, это результат развития грибного сообщества.

Как и прочие микоризные потребители органики, весёлковые образуют в природе устойчивые грибные сообщества – микоценозы. Их особенно удобно изучать в тропиках, хотя и у нас они не менее сложные. Сразу несколько десятков видов грибов могут контачить с одними растениями, а через них и между собой. Или наоборот, один гриб-симбионт может охватывать многие виды как хвойных, так и лиственных. Такова, например, лисичка. При этом часто одни грибы помогают питаться другим, работая их «желудком» в обмен на растительные сахара. Образуется чрезвычайно устойчивая система «грибы-грибы-растения».

По мере развития микоценоза одни виды грибов готовят ниши, приспосабливают систему для прихода других. Александр Иванович полагает, что именно это он и наблюдает в своём питомнике. Сначала прижились разные сапрофитные грибы, а затем, когда микоценоз был уже хорошо развит, комфортно обустроились и капризные, редкие весёлковые. Сейчас все грибы живут совместно, их плодовые тела появляются бок о бок, а мицелии плотно пересекаются и наверняка контачат. Несомненно пока одно: весёлка легко разводится и отлично приживается в режиме постоянной влажной мульчи.

Мало того: этот гриб – чуть не самый лекарственный из наших грибов. Вот что говорят книги: «Весёлка издавна применяется и в народной медицине. Наши предки употребляли молодые плодовые тела гриба в свежем виде, как салат, со сметаной. Женщины применяли их студневидный «сок» со сметаной в качестве косметических масок и становились самыми красивыми в округе: пригожими, белолицыми и без морщинок. Тот, кто регулярно ел сырую весёлку, ничем не болел». Не те ли это «молодильные яблоки» Кощея Бессмертного?..

Весьма вероятно: грибы, подобные весёлке и рядовкам, намного эффективнее в садах, чем эмигранты гломусы. Давайте испытывать их вместе – и северяне, и южане! Уверен: везде найдутся свои виды, оптимальные для «окультуривания». Обобщим разные наблюдения – получим неоценимый материал для практики.

УГЛЕРОДНОЕ ПИТАНИЕ: ВОЗДУХ ИЛИ ПОЧВА?..

Можно ли вообще сомневаться в классических азах ботаники? Например, в том, что растения поглощают углекислый газ из воздуха? Это же ещё Тимирязев блестяще доказал! Однако И. Н. Галкин решил, что мэтр неправ. Что наука вообще чушь городит, и воздух растениям не нужен. А фотосинтеза вообще не существует. Ересь, да и только! Но я ведь тот ещё правдоискатель – тут же заразился. Конкретно – насчёт углекислого газа. И разослал свои сомнения знакомым мастерам. Всерьёз откликнулся Кузнецов.

Эта еретическая главка родилась из нашей переписки. Я кумекал, спрашивал и сомневался – Александр Иванович рассуждал и дельно аргументировал.

Агрономия очень много говорит о минеральном питании. И создаётся иллюзия, будто бы оно – главное. Но рассмотрим сухую массу растений. Половина растительной ткани – углерод. Еще 20% – кислород, 15% – азот, 8% – водород. Итого – около 90%, собственно, «воздуха». Ведь большая часть почвенного азота – тоже из воздуха. И только 6-7% растения – зола, минералы: фосфор, калий, кальций и магний. Микроэлементов – сотые доли процента.

Налицо факт: самая важная часть растительного питания – углекислый газ. Мы зря его недооцениваем! «Выдохи» всего живущего – бесценная пища, главный материал для растений.

Так уж вышло: основа жизни на нашей планете – углерод. Уникальность этого элемента в его неповторимой химической гибкости. Вся органическая химия, от бензина и пластмасс до пестицидов – химия углеродных цепочек и структур. Вся биохимия, живые ткани – тоже. И всё это разнообразие вышло прямиком из углекислого газа.

Растения лепят органику из СО2 и воды. Мы окисляем её обратно до СО2 и воды. Так и обмениваемся: мы – все едоки органики – даём растениям углекислый газ, а они нам – органику и кислород. Кстати, кислород, как и водород, растения получают в основном из воды. Миллионы лет на планете поддерживается разумный баланс упомянутых газов.

Но вот проблема: углекислого газа в воздухе катастрофически мало – всего 0,03%. А уж культурным растениям, с их явно завышенной продуктивностью, его всегда не хватает! Летом, в солнечный и безветренный день, вокруг листьев быстро создаётся «вакуум» углекислого газа, и чем выше от земли, тем больше его дефицит. В теплице, уже через шесть недель после внесения навоза, уровень СО2 снижается до 0,01%! Установлено: при такой концентрации СО2 фотосинтез резко падает, а при ещё меньшей – почти замирает.

Всё это как-то не вяжется с буйным процветанием растительного царства. Разве могли растения миллионы лет так рисковать своим выживанием?.. Например, высоко в горах, на Крайнем Севере? Не поспешил ли Климент Аркадьевич, приписав поглощение СО2 только листьям?.. Если не листьями, то как добывают растения столько углерода? Кажется, у Кузнецова нашёлся логичный ответ и на этот вопрос.

УГЛЕРОД – ДА. НО ОТКУДА?

Прежде всего: откуда берётся углекислый газ в воздухе? Энергия биомассы земных растений почти на два порядка больше, чем дают сейчас все виды топлива. Людей ещё и в помине не было, а 0,03% СО2 в воздухе уже были. Выходит, вовсе не наши костры, не машины и ТЭЦ поставляют углекислый газ в атмосферу. Такую прорву СО2 способны «выдохнуть» только те, кто съел и окислил всю растительную биомассу – обитатели почв и океанов.

Расклад такой. Треть углекислого газа дают океаны, остальное – органическая мульча суши. И вовсе не тропиков! Две трети СО2 «выдыхают» почвы северных и умеренных широт. Тундры его выделяют до 20 кг/га/сутки, лесные почвы – до 300, перегнойные луга и чернозёмы – до 600. И это – только в приземном воздухе! В самой же почве СО2 ещё в 10-20 раз, а в перегнойной грядке – в 30-40 раз больше. До 80% этого углекислого газа дают микробы и грибы, и до 20% – почвенная фауна.

Очевидно: вернуть растениям их углерод может только постоянный распад, окисление дёрна или подстилки. Итак, источник СО2 – почва. Главный резервуар, хранитель СО2 – почвенная мульча. Будь вы на месте растений, где бы вы стали добывать СО2: там, где его почти нет, или там, где он сконцентрирован? Не почвенный ли углекислый газ мы измеряем на самом деле, анализируя приземный воздух?..

Давайте немного порассуждаем. Ночью листья выделяют СО2 – «дышат». Но днём, вместе с кислородом, растения также выделяют углекислый газ, хотя он нужен для фотосинтеза. Не говорит ли это просто об избытке СО2 в тканевой жидкости?..

Физически, обмен газов определяется их парциальным давлением, а в жидкостях – их насыщением. Газ переходит оттуда, где его больше, туда, где его меньше. Так работают наши лёгкие: в плазме венозной крови кислорода меньше, чем в воздухе, и кислород поступает в плазму. Зато углекислого газа там больше, чем в воздухе, и он выходит в воздух.

Устьица листьев не умеют вентилировать активно. Они «вдыхают» и «выдыхают» по закону равновесного состояния газов. Донести СО2 до хлоропластов можно, только растворив его в воде. Но если он выделяется, значит, его насыщение в цитоплазме клеток избыточно. Как же он может при этом поглощаться?.. Кстати, в Сети не нашлось никаких исследований на эту тему.

Идём далее, и находим небессмысленную аналогию. Азот – химический сосед, почти что родич углерода. В воздухе его – не доли процента, а целых три четверти. Казалось бы – бери, поглощай листьями! Но поглощается он только в виде растворов – аммония, нитратов и простой азотистой органики. Весьма логично предположить: углерод также усваивается в виде растворов. И действительно, почва просто пропитана его растворами! Это сам растворённый СО2, угольная кислота, карбонаты, простые сахара и всевозможные кислоты. И корни, разумеется, поглощают СО2 и угольную кислоту – этот факт отражён ещё в энциклопедии 60-х. Вопрос вот в чём: основной ли это способ добычи углерода?

По Тимирязеву, огромная площадь листьев нужна только и именно для поглощения углекислого газа из воздуха. Но при том листовое испарение выкачивает почвенный раствор, добывая таким образом минералы. Значит, площадь листьев добывает из почвы и углекислые растворы. Чем больше испарил и прокачал, тем больше СО2 добыл. Никакого конфликта! Наоборот. Охлаждение листьев, добыча минералов, воды и углерода одновременно, сразу, одним усилием, с минимальными затратами – вот рациональность, свойственная Природе! Именно так растения и должны жить.

Хорошо. Но остаётся вопрос: сколько в почвенной воде СО2? Хватит ли его для фотосинтеза? А гидропоника – откуда там углекислый газ в растворе? Там же нет органики. А ведь растения растут!

Растут и будут расти, потому что не существует прохладной воды, не насыщенной газами. Дождевые капли, ещё не долетев до земли, превращаются в слабые растворы. Выпаренная дистиллировка, оставленная открыто, уже через пару часов – раствор. А растворимость СО2 в 70 раз выше азотной, и в 150 – кислородной. На два порядка! Угадайте, каким газом насыщена вода больше всего?

И насыщенность эта тем выше, чем вода холоднее и чем больше в воздухе углекислого газа. Прикинем. Летом, на вашем теплом балконе, в воде растворится примерно 0,6 мг/л СО2: такова его равновесная концентрация с воздухом при +25°С. Осенью, при +12°С, в растворе будет уже около 1,1 мг/л – почти вдвое больше. В воздушных полостях луговой почвы может быть до 3% СО2 – на два порядка больше, чем на вашем балконе. Здесь в раствор перейдёт до 100 мг/л – для нормальной дикой флоры уже достаточно! Конечно, при этом почвенный раствор кислеет. Но он тут же нейтрализуется, освобождая минералы из почвенных карбонатов, силикатов и гумуса. Это детально исследовали ещё до Овсинского.

В природных грядках и садах, усиленных органикой и активными сапрофитами, концентрация СО2 может подняться ещё на порядок, а теоретически до полного насыщения: под мульчёй – до 1,5 г/л. Теперь прикинем: куст капусты испаряет за лето до 400 л воды. То есть, на обычной почве он может добыть корнями до 40 г СО2 – это половина кочана. А на органической грядке с сидератами – все 400 г, как раз кочан на 6-7 кг. Остаётся гадать, как Ефим Грачёв выращивал кочанищи по 30 кэгэ – ну, уж наверняка не за счёт воздуха!

Есть и ещё аргументы в пользу углеродно-почвенной гипотезы. Известно: добавка углекислого газа в воздух теплиц увеличивает урожаи. Об этом защищена масса диссертаций. И вот что они сообщают. Рост содержания СО2 вчетверо, до 0,12%, усиливает фотосинтез вдвое и прибавляет четверть урожая. Подъём до 0,3% – в десять раз – позволяет собрать полтора урожая. Дальнейшее насыщение воздуха СО2 до 1% – урожай не увеличивает. А выше 1,5-2% - урожай начинает резко падать: фотосинтез прекращается.

В чём тут дело? По-моему, всё логично. Пока углекислый газ растёт до 0,3 %, он, с одной стороны, больше насыщает почвенную воду, а с другой – «парциально давит» на листья, препятствуя быстрому удалению СО2 из клеток. Поэтому, защищая огород от ветра, ставя бродящие бочки или добавляя органику, мы помогаем растениям. Но после критического уровня (1,5%) доля СО2 в воздухе уже такова, что вообще не даёт ему выходить из цитоплазмы. Корни качают углекислоту, а излишки девать некуда. Угроза отравления! И растение блокирует всасывание и прокачку растворов - замирает, пережидая стресс.

Вывод: судя по всему, в богатых и живых почвах, при избытке почвенного СО2, растения получают основную часть углерода из почвенного раствора. И только на «культурных» почвах, когда почвенный раствор вместо углерода перенасыщен солями, они включают запасной, «пожарный» механизм – поглощение СО2 из воздуха. Видимо, это и наблюдал Тимирязев. Но, Господи, как же мало углекислого газа должно быть в этих несчастных листьях, чтобы начать всасывать его воздушный мизер! Отсюда – главное правило природного земледелия: ОРГАНИКА РАСПАДАЕТСЯ ИМЕННО ПОД РАСТЕНИЯМИ, А НЕ В КОМПОСТНОЙ КУЧЕ!

Остался ещё один важный штрих: вода.

ВОДА – ТОЖЕ ПИЩА!

Сначала – вдогонку углекислому газу. Химический факт: сколько его в воду не напихивай – хоть до 80 г/л – он почти весь остаётся в виде свободных молекул СО2. А для фотосинтеза нужны активные карбонат-ионы, то есть угольная кислота Н2СО3. Одна из основных реакций фотосинтеза – фотолиз воды. Вода расщепляется в хлоропластах для получения ионов водорода – протонов, необходимых для протекания фотосинтеза. Растворимость СО2 как раз повышается в «кислой» воде, насыщенной протонами. Логично, если эти протоны используются не только в самом фотосинтезе, но и для получения угольной кислоты – прямо тут, в хлоропластах.

Теперь главное. О воде говорят всё, что угодно: растворитель, плазма клеток, электролит, проводник, среда биохимии и жизни, средство охлаждения и терморегуляции, даже носитель информации... Но истинная, главная роль воды странно и необъяснимо замалчивается. Её чётко обозначил учёный-агроном из Нововоронежа, автор идеи мостового земледелия, В. И. Каревский. Вода – это питательное вещество. Причём одно из основных!

Вдумаемся: абсолютно сухая органика распадается на СО2 и Н2О. А сахара так и называются: «угле-воды», и доля воды в них даже больше, чем доля углерода. Возьмите в руки кусок сахара или пряник: в них две трети «воды»!

Вода – единственный источник водорода для всех органических молекул. А водорода в сухой биомассе – 8%. Значит, в килограмме зерна 80 г водорода, на который переработано 640 мл химически активной воды. Воды, как питательного вещества! Буквально, как если бы это был сахар или нитрофоска, усвоенные целиком.

Кислорода в сухой биомассе – 20%. Углеводы получают свой кислород из СО2. А вот тот кислород, которым мы дышим – «водяной».

Добавим сюда фотолиз воды и получение протонов для самого синтеза глюкозы, а также для синтеза энергетических молекул АТФ. Вот теперь картина стала полной! Главное питание растений – три элемента: углерод, водород, кислород. Точнее - СО2, растворённый в Н2О. А вода – не просто «универсальный растворитель». Это один из трёх китов фотосинтеза и одна из трёх составляющих органики.

Кстати, разлагая органику, сапрофиты возвращают почве её воду, и среда вокруг них увлажняется. Конечно, в осадках воды в сотни раз больше. Но мы ещё не знаем: может быть, «органическая вода» – особая, и играет особую роль в жизни растений.

Итак, проблема питания растений заметно проясняется!

ПИЩЕВАРЕНИЕ ПОЧВЫ – ПИТАНИЕ РАСТЕНИЙ

Мудрая Природа наделила всех обитателей биосферы колоссальным потенциалом выживания на случай разных экстремальных дефицитов. Мы, животные, можем скачкообразно повышать основной обмен – «ловить второе дыхание», получать воду из жировой клетчатки, даже кислород брать из внутренних запасов- мы заращиваем раны, а раки и ящерицы могут и новые конечности вырастить. Так же и растения: при сильной засухе могут сбросить листья и потерять часть корней- потеряли листья или ветки – выращивают из спящих почек новые.

Но особенно застраховано питание. У всех животных минимум два способа питаться: основной – активный, и запасной – страховой. Есть пища – получаем её извне, а нету – «съедаем» внутренние запасы жира и гликогена.

У растений и почвенной живности то же самое. Основной способ питания – активно-пищеварительный: почвенные организмы под мульчёй переваривают органику, растения питаются с их стола. При этом микориза и микробы-симбионты служат реальным продолжением корней, их «ртом и желудком». В условиях дефицита питания вся ставка на «рот и желудок»! Н

Внимание, только СЕГОДНЯ!

» » Биотехнология природного земледелия александра кузнецова, алтайский вариант